Magnetic and structural properties of nickel zinc ferrite nanoparticles synthesized at room temperature

نویسندگان

  • Shannon A. Morrison
  • Christopher L. Cahill
  • Everett E. Carpenter
  • Michael E. McHenry
  • Vincent G. Harris
چکیده

Nickel zinc ferrite nanoparticles (Ni0.20Zn0.44Fe2.36O4) have been produced at room temperature, without calcination, using a reverse micelle process. Particle size is approximately 7 nm as determined by x-ray powder diffraction and transmission electron microscopy. Saturation magnetization values are lower than anticipated, but are explained by elemental analysis, particle size, and cation occupancy within the spinel lattice. Extended x-ray absorption fine structure analysis suggests that a significant amount of Zn, which normally occupies tetrahedral sites, actually resides in octahedral coordination in a zinc-enriched outer layer of the particles. This ‘‘excess’’ of diamagnetic Zn can thus contribute to the overall decrease in magnetism. Further, this model can also be used to suggest a formation mechanism in which Zn is incorporated at a later stage in the particle growth process. © 2004 American Institute of Physics. @DOI: 10.1063/1.1715132#

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Synthesize of Superparamagnetic Zinc Ferrite Nanoparticles at Room Temperature

Superparamagnetic single phase zinc ferrite nanoparticles have been prepared by coprecipitation method at 20 °C without any subsequent calcination. The composition, crystallite size, microstructure and magnetic properties of the prepared nanoparticles were investigated using X-ray diffraction (XRD), field emission scanning electron microscope (FESEM), transmission electron microscope (TEM)...

متن کامل

Synthesis and Characterization of Nickel Zinc Ferrite Nanoparticles

In this research nickel zinc ferrite nanoparticles with composition of Ni1-xZnxFe2O4 (where x=0, 0.3, 0.7, 1) were synthesized by a sol-gel method at 600 °C for 5 hours. The structure of nanoparticles was studied using X-ray diffraction pattern. The lattice parameter of ferrite nanoparticles was calculated and indicates lattice constant of nanoparticl...

متن کامل

Photocatalytic dye degradation properties of Zinc Copper Ferrites nanoparticles

In the present study, new multi-components spinel ferrite Zinc doped metallic ferrites are investigated. The synthesized compounds consisting of Zinc copper ferrite nanostructures were developed using the Co-precipitation technique. Powder X-ray diffraction pattern (XRD) confirms the formation of the spinel phase for all the samples. The lattice constant was studied through powder X-ray diffrac...

متن کامل

Preparation of Superparamagnetic of Co0.5Zn0.5Fe2O4 at Room Temperature by Co-precipitation Method and Investigation of Its Physical Properties

Magnetic nanoparticles of cobalt-zinc ferrite (Co0.5Zn0.5Fe2O4) have been synthesized in a homogeneous aqueous solution at room temperature by co-precipitation method without any template and subsequent heat treatment. Synthesis of material is confirmed using XRD from the report of single phase polycrystalline ferrite material and also determined lattice constant. Atomic absorption spectrophoto...

متن کامل

The effect of increasing of iron concentration on the physical properties of zinc-iron ferrite nanoparticles

In this research, zinc-iron ferrite nanoparticles were synthesized by thermal treatment method. The presence of crystalline phases by X-ray diffraction (XRD) was determined by X-ray diffraction (XRD), which confirmed the presence of crystalline phases in all nanoparticles. The particle size and morphology of the nanoparticles were obtained using Field Emission Scanning Electron Microscopy (FESE...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004